Главная » Обычаи » Наблюдать двойной. Любительские наблюдения двойных звезд. Маленький компонент "высасывает" газ из большой звезды

Наблюдать двойной. Любительские наблюдения двойных звезд. Маленький компонент "высасывает" газ из большой звезды

> Двойные звезды

– особенности наблюдения: что это такое с фото и видео, обнаружение, классификация, кратные и переменные, как и где искать в Большой Медведице.

Звезды на небосклоне зачастую формируют скопления, которые могут быть густыми или, напротив, рассеянными. Но иногда между звездами возникают и более прочные связи. И тогда принято говорить о двойных системах или двойных звездах . Также их называют кратными. В таких системах звезды оказывают друг на друга непосредственное влияние и эволюционируют всегда вместе. Примеры таких звезд (даже с наличием переменных) можно найти буквально в самых известных созвездиях, например, Большой Медведице.

Открытие двойных звезд

Открытие двойных звезд стало одним из первых достижений, сделанных с помощью астрономического бинокля. Первой системой данного типа была пара Мицар в созвездии Большой Медведицы, которая была открыта астрономом из Италии Ричолли. Поскольку во Вселенной находится невероятное количество звезд, ученые решили, что Мицар не может быть единственной двойной системой. И их предположение оказалось полностью оправданным будущими наблюдениями.

В 1804 году Вильям Гершель, знаменитый астроном, который вел научные наблюдения в течение 24 лет, издал каталог с подробным описанием 700 двойных звезд. Но и тогда не было сведений о том, есть ли физическая связь между звездами в такой системе.

Маленький компонент "высасывает" газ из большой звезды

Некоторые ученые придерживались точки зрения о том, что двойные звезды зависят от общей звездной ассоциации. Их аргументом был неоднородный блеск составляющих пары. Поэтому складывалось впечатление, что их разделяет значительно расстояние. Для подтверждения или опровержения этой гипотезы потребовалось измерения параллактического смещения звезд. Эту миссию взял на себя Гершель и к своему удивлению выяснил следующее: траектория каждой звезды имеет сложную эллипсоидную форму, а не вид симметричных колебаний с периодом в полгода. На видео можно наблюдать эволюцию двойных звезд.

В данном видеоматериале представлена эволюция тесной двойной пары звезд:

Вы можете поменять субтитры, нажав на кнопку "cc".

Согласно физическим законам небесной механики два связанных гравитацией тела передвигаются по орбите эллиптической формы. Результаты исследования Гершеля стали доказательством предположения о том, что в двойных системах есть связь силы тяготения.

Классификация двойных звезд

Двойные звезды принято группировать на следующие виды: спектрально-двойственные, двойные фотометричные, визуально-двойные. Данная классификация позволяет составить представление о звездной классификации, однако не отражает внутреннюю структуру.

С помощью телескопа можно с легкостью определить двойственность визуально-двойных звезд. Сегодня существуют данные о 70 000 визуально-двойных звезд. При этом только 1% из них точно обладают собственной орбитой. Один орбитальный период может иметь продолжительность от нескольких десятилетий до нескольких веков. В свою очередь, выстраивание орбитального пути требует немалых усилий, терпения, точнейших расчетов и длительных наблюдений в условиях обсерватории.

Зачастую научное сообщество обладает информацией лишь о некоторых фрагментах передвижения по орбите, а недостающие участки пути они реконструируют дедуктивным методом. Не стоит забывать, что плоскость орбиты, возможно, наклонена относительно луча зрения. В данном случае видимая орбита серьезно отличается от реальной. Конечно, при высокой точности расчетов можно рассчитать и истинную орбиту двойных систем. Для этого применяются первый и второй законы Кеплера.

Мицар и Алькор. Мицар - двойная звезда. Справа - спутник Алькор. Между ними всего один световой год

Как только определяется истинная орбита, ученые могут вычислить угловое расстояние между двойными звездами, массу и их период вращения. Нередко для этого используется третий закон Кеплера, который помогает найти и сумму масс компонентов пары. Но для этого нужно знать расстояние между Землей и двойной звездой.

Двойные фотометрические звезды

О двойственной природе таких звезд можно узнать только по периодическим колебаниям из блеска. Во время своего движения звезды такого типа по очереди загораживают друг друга, поэтому их нередко называют затменно-двойными. Орбитальные плоскости данных звезд приближены к направлению луча зрения. Чем меньше площадь затмения, тем ниже блеск звезды. Изучив кривую блеска, исследователь может рассчитать угол наклона плоскости орбиты. При фиксации двух затмений на кривой блеска будут два минимума (снижения). Период, когда отмечаются 3 последовательных минимума на кривой блеска, называют орбитальным периодом.

Период двойных звезд продолжается от пары часов до нескольких суток, что делает его более коротким по отношению к периоду визуально-двойных звезд (оптические двойные звезды).

Спектрально-двойственные звезды

Через метод спектроскопии исследователи фиксируют процесс расщепления спектральных линий, которое происходит в результате эффекта Доплера. Если один компонент является слабой звездой, то в небе можно наблюдать лишь периодическое колебание позиций одиночных линий. Данный метод применяет только тогда, когда компоненты двойной системы находятся на минимальном расстоянии и их идентификация с помощью телескопа осложнена.

Двойные звезды, которые можно исследовать через эффект Доплера и спектроскоп, именуют спектрально-двойственными. Однако далеко не каждая двойная звезда носит спектральный характер. Оба компонента системы могут сближаться и отдаляться друг от друга в радиальном направлении.

Согласно результатам астрономических исследований, большая часть двойных звезд располагаются в галактике Млечный Путь. Соотношение одинарных и двойных звезд в процентах рассчитать крайне сложно. Действуя через вычитание, можно вычесть количество известных двойных звезд из общего числа звездного населения. В этом случае становится очевидным, что двойные звезды составляют меньшинство. Однако данный метод нельзя назвать очень точным. Астрономам известен термин «эффект отбора». Чтобы зафиксировать двойственность звезд, следует определить их главные характеристики. В этом пригодится специальное оборудование. В ряде случаев, зафиксировать двойные звезды крайне сложно. Так, визуально двойные звезды нередко не визуализируются при значительном расстоянии от астронома. Иногда невозможно определить угловое расстояние между звездами в паре. Для фиксации спектрально-двойственных или фотометрических звезд требуется тщательно измерить длины волн в спектральных линиях и собрать модуляции световых потоков. В этом случае блеск звезд должен быть достаточно сильным.

Всё это резко уменьшает количество звезд, пригодных для изучения.

Согласно теоретическим разработкам, доля двойных звезд в звездном населении варьируется от 30% до 70%.

А.А. Прохоров

Изотопы 100 Mo, 82 Se и эксперименты NEMO, MOON, AMoRE

Введение

Двойной β-распад является самым редким типом радиоактивного распада. Двойной β-распад имеет двух- и без- нейтринные моды распада. Период полураспада по каналу ββ2ν ≈ 10 18 лет (для различных изотопов значения различны), а по каналу ββ0ν получены только нижние оценки
> 10 26 лет. Для того, чтобы наблюдать двойной β-распад необходимо, чтобы цепочка двух последовательных β-распадов была запрещена энергетически или сильно подавлена законом сохранения полного момента количества движения.
Для изотопов 100 Mo, 82 Se запрещены процессы β-распада энергетически и возможны процессы двойного β-распада:

100 Mo → 100 Ru +2e − + 2 e
82 Se→ 82 Kr +2e − + 2 e

На рис. 1.1 и 1.2 изображены схемы двойного β-распада для 100 Mo и 82 Se . Одной из особенностей изотопа 100 Mo является распад не только на основное состояние 100 Ru, но также и на возбужденное состояние 0 1 + , что позволит проверить массу нейтрино, если будут получены данные от распада ββ0ν.


Рис. 1.1. Схема двойного β-распада изотопа 100 Mo


Рис. 1.2. Схема двойного β-распада изотопа 82 Se

Одно из важнейших преимуществ 100 Mo и 82 Se с точки зрения эксперимента по поиску ββ0ν-распада является высокая энергия ββ-перехода (Q ββ (100 Mo) = 3034 кэВ и Q ββ (82 Se) = 2997 кэВ). Согласно правилу Сарджента вероятность β-распада ядра в единицу времени для ультрарелятивистских электронов (для нерелятивистских электронов сохраняется так же пропорциональность, но зависимость выглядит сложнее) принимает простой степенной вид:

λ = 1/τ = Q β 5

С точки зрения эксперимента, большое значение энергии Q ββ снижает проблему фона, поскольку естественный радиоактивный фон резко падает при энергии выше 2615 КэВ (энергия γ-квантов от распадов 208 Tl из цепочки распадов 232 Th).
Естественное содержание изотопа 100 Mo в молибдене около 9.8 %, но с помощью центрифуг можно обогатить молибден нужным нам изотопом до 95%. Кроме того возможно производство 100 Mo в больших количествах, необходимых для эксперимента. Недостатками этих изотопов являются небольшие периоды полураспада по каналу ββ2ν, что означает повышенный неустранимый фон от двухнейтринного распада .

(100 Mo) = (7.1 ± 0.6)·10 18 лет
(82 Se) = (9.6 ± 1.1)·10 19 лет

По этой причине необходимо высокое энергетическое разрешение детектора для регистрации ββ0ν-распада.

1. Эксперимент NEMO

Эксперимент NEMO (N eutrino E ttore M ajorana O bservatory) − эксперимент по двойному β-распаду и поиску безнейтринного двойного β‑распада, включает уже проведенные эксперименты NEMO - 1,2,3 и строящийся на данный момент эксперимент SuperNEMO.
Эксперимент NEMO-3 по двойному β-распаду начался в феврале 2003 года и закончился в 2010 году. Целью данного эксперимента являлось обнаружение безнейтринного (ββ0ν) распада, поиск эффективной майорановской массы нейтрино на уровне 0.1 эВ, а также точное изучение двойного бета-распада (ββ-распада) с помощью детектирования двух электронов в 7 изотопах:

В эксперименте применялось прямое детектирование двух электронов ββ‑распада в трековой камере и калориметре. Детектор измерял треки электронов, реконструировал полную кинематику событий. Данная концепция начала разрабатываться в 90-х годах. Исследовались технологии очистки материала детектора и источника, для подавления фона. Это было необходимо для эффективного выделения сигнала из полученных данных, потому что ββ0ν-распад имеет большой период полураспада. Разрабатывались трековые камеры из гейгеровских ячеек и калориметры. В начале были построены два прототипа NEMO-1 и NEMO-2, которые показали работоспособность и эффективность данных элементов детектора. С помощью детектора NEMO 2 исследовались источники и величина фона, были проведены измерения ββ2ν-распадов нескольких изотопов. Все это позволило создать детектор NEMO-3, работающий на тех же принципах, но с более низким уровнем радиоактивного фона и использовать в качестве источников ββ-изотопов, общей массой до 10 кг.

1.1. Внутреннее строение детектора NEMO-3

Детектор NEMO-3 работает в подземной лаборатории Модана во Франции, расположенной на глубине 4800 м в.э.(водного эквивалента) (глубина подземной лаборатории в метрах водного эквивалента означает толщину слоя воды, который ослабляет поток космических мюонов в той же степени, что и расположенный над лабораторией слой горных пород). Детектор цилиндрической формы состоит из 20 одинаковых секторов. Фольги образуют вертикальный цилиндр диаметром 3.1м и высотой 2.5м, который делит на 2 части трековый объем детектора. Пластиковые сцинтилляторы покрывают вертикальные стенки трекового объема детектора и пространство на крышках цилиндра. Калориметр состоит из 1940 блоков пластиковых сцинтилляторов, соединенных с низкофоновыми ФЭУ. Детектирование гамма-излучения позволяет измерить внутреннюю радиоактивность фольг источников и распознать фоновые события. Детектор NEMO-3 идентифицирует электроны, позитроны, альфа-частицы, т.е. проводит прямое детектирование низкоэнергетических частиц от естественной радиоактивности.


Рис. 2. Детектор NEMO-3 без оболочки. 1 − фольга источник, 2 − пластиковые сцинтилляторы,
3 − низкофоновые ФЭУ, 4 − трековые камеры

1.2. Сцинтилляторный калориметр

Для измерения энергии частиц и времени их пролета в объеме трековой камеры используются пластиковые сцинтилляторы. Калориметр состоит из 1940 счетчиков, каждый из которых состоит из пластикового сцинтиллятора, световода и низкофонового ФЭУ (усиление ФЭУ выбирается так, чтобы можно было регистрировать частицы с энергиями до 12 МэВ). Сцинтилляторы расположены внутри газовой смеси трековой камеры, что сводит к минимуму потери энергии при детектировании электронов. ФЭУ закреплены за пределами трековой камеры. ФЭУ служат для измерения радиоактивности фольг источников и отделения фоновых событий.

1.3. Трековый детектор

Трековый объем детектора состоит из 6180 открытых дрейфовых трубок (ячеек) длиной 2.7 м, которые работают в гейгеровском режиме. Эти ячейки расположены концентрическими слоями вокруг фольги с источниками - с каждой стороны от фольги по 9 слоев. На рис. 3 изображен один сектор трековой камеры и элементарная ячейка в поперечном разрезе, образующая правильный восьмиугольник диаметром 3 см.
Когда заряженная частица пересекает ячейку, происходит ионизация газа, при этом образуется примерно 6 электронов на см вдоль траектории. Расположение анодной и катодных проволочек приводит к неоднородному электрическому полю, поэтому все электроны дрейфуют с разной скоростью к анодной проволочке. Измеряя время дрейфа можно восстановить поперечную координату частицы в ячейке. Лавина вблизи анодной проволочки образует плазму, движущуюся с постоянной скоростью к катодным электродам. По разности времен регистрации катодных сигналов вычисляют вертикальную координату. Таким образом с помощью трековой камеры и калориметра можно измерить траектории частиц и время пролета.


Рис. 3 Сверху: вид сверху на один сектор трековой камеры с подробным изображением гейгеровской ячейки. Снизу: вид сбоку на гейгеровскую ячейку.

1.4. Источники ββ-распада

Так как детектор состоит из 20 секторов, то имеется возможность проводить эксперименты одновременно с различными изотопами. Для отбора изотопов были рассмотрены следующие критерии:

  • естественная распространенность изотопа в природе (не менее 2%)
  • достаточная энергия перехода (для увеличения вероятности перехода и эффективного подавления фона)
  • уровень фона вокруг области энергии перехода
  • значения ядерных матричных элементов ββ2ν и ββ0ν мод распада
  • возможность уменьшения радиоактивного загрязнения изотопов.

Рис. 4. Расположение ββ-изотопов в детекторе с указанием массы изотопа

С помощью этих критериев были отобраны следующие изотопы:

100 Mo, 82 Se, 96 Zr, 48 Ca, 116 Cd, 130 Te, 150 Nd

Фольги изготовлялись в виде узких полос длиной около 2.5 м и шириной 65 мм. Таким образом в каждом секторе содержится по 7 таких полос. На рис.4 показано расположение изотопов в детекторе с указанием общей массы каждого изотопа в детекторе.

1.5. Магнитная система и защита

Между сцинтилляторным калориметром и защитой из железа расположена цилиндрическая обмотка, создающая магнитное поле в трековом объеме детектора (25 Гс) с силовыми линиями вдоль вертикальной оси детектора. Применение магнитного поля в детекторе позволит различать e − и е + . Защита из железа окружает магнитную обмотку и покрывает верхние и нижние торцы детектора. Толщина железа 20 см. На рис. 6 изображена внешняя защита детектора. После прохождения через обмотку и железную защиту остаются около 5% событий e − e + и e − e − .

Рис. 6. Внешнее строение и защита детектора NEMO-3

Нейтронная защита замедляет быстрые нейтроны до тепловых, уменьшает количество тепловых и медленных нейтронов. Она состоит из 3-х частей: 1 − парафин толщиной 20 см под центральной башней сцинтилляторов, 2 − дерево толщиной 28 см, которое покрывает верхний и нижний торцы детектора, 3 − 10 резервуаров с борированной водой толщиной 35 см, разделенных прослойками из дерева, окружает наружную стенку детектора. Также используется времяпролетная методика для отделения электронов, возникающих вне фольги источника.

1.6. Регистрация событий двойного β-распада и фон

ββ событие регистрируется по двум реконструированным электронным трекам, выходящим из общей вершины в фольге источнике. Треки должны иметь кривизну, соответствующую отрицательным зарядам. Энергия каждого электрона, измеренная в калориметре должна быть больше 200 КэВ. Каждый трек должен попасть в отдельную пластину сцинтиллятора. Также для отбора используется времяпролетная характеристика трека − с помощью ФЭУ измеряется задержка между двумя сигналами электронов и сравнивается с оценкой разности времени пролета для электронов. Фон в данном эксперименте может быть разбит на 3 группы: внешнее γ-излучение, радон внутри трекового объема, образованный в урановой цепочке в скальных породах и внутреннее радиационное загрязнение источника.

1.7. Очищение источника от природных примесей

Т.к. детектор NEMO-3 предназначен для поиска редких процессов, то он должен иметь фон на очень низком уровне. Фольга источника должна быть очищена от радиоактивных изотопов, а оставшаяся радиоактивность естественных элементов должна быть точно измерена. Наибольшими источниками фона являются 208 Tl и 214 Bi, энергии распада которых близки к интересующей нас области распада 100 Mo. Для детектирования такого низкого фона был разработан низкофоновый детектор BiPo, предназначенный для исследования слабых радиоактивных загрязнений 208 Tl и 214 Bi в больших образцах . Принцип работы детектора основан на регистрации так называемого процесса BiPo − последовательности распадов радиоактивных изотопов висмута и полония, которые сопровождаются испусканием заряженных частиц. Этот процесс является частью цепи радиоактивных распадов урана и тория естественной радиоактивности. Энергии электронов и
α-частиц, рождающихся в этих распадах, достаточны для того, чтобы надежно регистрировать их в детекторах на основе пластмассовых сцинтилляторов, а средние времена жизни промежуточных изотопов не превышают нескольких сотен мкс, что позволяет последовательно регистрировать распады. Детектор будет регистрировать совпадения во времени и пространстве сигналов от электронов β-распада изотопов висмута и сигналов от α-частиц изотопов полония. На рис. 7 представлены радиоактивные распады в процессе BiPo.


Рис. 7. Схема радиоактивных распадов процесса BiPo

1.8. Результаты экспериментов

В таблице 1 приведены результаты периодов полураспада для ββ2ν-моды распада для распадов 100 Mo в 100 Ru на основное 0 + и возбужденное 0 1 + состояния, распадов 82 Se, 96 Zr. Отношение S/B - отношение сигнала распада к фону, в периодах полураспада T 1/2 (2ν) указаны ошибки: первая статистическая, вторая систематическая.

Таблица 1. Результаты измерений периода полураспада для изотопов 100Mo, 82 Se, 96 Zr в эксперименте NEMO-3 для распада ββ2ν

Изотоп Время
измерения,
дни
Количество
2ν событий
S/B T 1/2 (2ν), лет
100 Mo 389 219000 40 (7.11±0.02±0.54)·10 18
100 Mo - 100 Ru(0+) 334.3 37 4
82 Se 389 2750 4 (9.6±0.3±1.0)·10 19
96 Zr 1221 428 1 (2.35±0.14±0.19)·10 19

К настоящему времени в эксперименте EMO-3 не было зарегистрировано ни одного ββ0ν-распада. Были получены нижние пороги периода полураспада по данному каналу для каждого изотопа. Результаты приведены в таблице 2.

Таблица 2. Результаты измерений периода полураспада для изотопов 100 Mo, 82 Se, 96 Zr в эксперименте NEMO-3 для распада ββ0ν

В случае ββ0ν-распада в спектре электронов ожидался пик в области энергии Q ββ ββ-распада. На рис. 8 изображены спектры электронов для изотопов 100 Mo и 82 Se. Эти распределения показывают хорошее совпадение данных экспериментов с теоретическими предсказаниями. На рис. 9 представлен фрагмент спектров из рис.8, но в области энергии ββ0ν-распада.

Рис. 8. Спектр электронов, слева для 100 Mo,справа для 82 Se. Статистика за 1409 дней. Гипотетическое распределение 0ν представлено в виде кривой в области энергии ββ0ν-распада (гладкая кривая в области энергий 2.5-3 МэВ) .

Рис.9. Спектр электронов в области энергии β-распада, слева для 100 Mo, справа для 82 Se. Статистика за 1409 дней. Гипотетическое распределение 0ν представлено в виде кривой в области энергии ββ0ν-распада (гладкая кривая) .

Полученные данные дают более низкий период полураспада по каналу ββ0ν, чем это было предсказано теоретически. В результате данного эксперимента было получены ограничения на эффективную массу Майорановских нейтрино для: < 0.45-0.93 эВ,
< 0.89-2.43 эВ.
В детекторе NEMO-3 так же проводился поиск ββχ 0 0ν - распада с учетом существования гипотетической частицы, имеющей название голдстоуновский бозон. Этот безмассовый голдстоуновский бозон возникает из-за нарушения (B-L) симметрии, где B и L, соответственно барионное и лептонное число. Возможные спектры двух электронов для различных мод ββχ 0 0ν - распадов показаны на рис. 10. Здесь − спектральное число. которое определяет вид спектра. Например, для процесса с испусканием одного Майорана n = 1, для 2ν моды n = 5, для массивного Майорана n = 2, для двух Майоранов ββχ 0 χ 0 0ν соответствует n = 3 или 7.


Рис. 10. Спектры энергии электронов для различных мод:
ββχ 0 0ν (n = 1 и 2), ββ2ν (n=2), ββχ 0 χ 0 0ν (n = 3 и 7) для 100 Mo

Никаких доказательств, что ββχ 0 0ν -распад происходил, нет. Были получены пределы периодов полураспада для 100 Mo, 82 Se, 94 Zr, теоретически рассчитанные для процесса с испусканием одного Майорана. Теоретические пределы составили T 1/2 (100 Mo) > 2.7·10 22 лет, T 1/2 (82 Se) > 1.5·10 22 лет,
T 1/2 (94 Zr) > 1.9·10 21 лет.
Т.о. в эксперименте были получены только нижние пределы периода полураспада для безнейтринного двойного β-распада. Поэтому было решено построить на основе NEMO-3 новый детектор, который содержал бы намного большую массу изотопа и имел более эффективную систему детектирования − SuperNEMO.

1.9. SuperNEMO

Эксперимент SuperNEMO − это новый проект, который использует трековые и калориметрические технологии проекта EMO-3 при увеличенных массах ββ изотопов. Строительство этого детектора началось в 2012 году в подземной лаборатории в Модене. К октябрю 2015 года были успешно установлены трековые модули. В 2016 году планируется осуществить окончательный монтаж и ввод в эксплуатацию, а к началу 2017 года получить первые экспериментальные данные.
Детектор будет измерять треки электронов, вершины, время пролета, реконструировать полную кинематику и топологию события. Идентификация гамма и альфа частиц, а также отделение e − от e + с помощью магнитного поля, являются основными моментами для подавления фона. SuperNEMO также сохраняет важную особенность детектора NEMO-3. Эта особенность заключается в отделении источника двойного β-излучения от детектора, что позволяет изучать различные изотопы вместе. Новый детектор содержит в себе 20 секций, каждая из которых может вмещать в себя около 5-7 кг изотопов. Сравнение основных параметров для детекторов SuperNEMO и NEMO 3 представлены в таблице 3.

Таблица 3. Сравнение основных параметров NEMO 3 и SuperNEMO

Параметры NEMO 3 SuperNEMO
Изотоп 100 Mo 82 Se
Масса изотопа, кг 7 100-200
Энергетическое разрешение
для 3 МэВ e − , FWHM в %
~8 ~ 4
Эффективность ε(ββ0ν) в % ~18 ~30
208 Tl в фольге, мкБк/кг < 20 < 2
214 Bi в фольге, мкБк/кг < 300 < 10
Чувствительность,
T 1/2 (ββ0ν)·10 26 лет
, эВ
0.015-0.02
0.3-0.7

1-2
0.04-0.14

На рис. 11 изображены модули детектора SuperNEMO. Источником являются тонкие пленки
(~40 мг/cм 2) внутри детектора. Они окружены трековыми камерами и калориметрами, закрепленными на внутренних стенках детектора. Трековый объем содержит более, чем 2000 дрейфовых трубок, работающих в гейгеровском режиме и расположенных параллельно фольгам. Калориметрическая система состоит из 1000 блоков, которые покрывают большую часть поверхности детектора .

Устройство трековой системы аналогично трековой системе в детекторе NEMO 3. Был создан прототип детектора SuperNEMO, состоящий из 90 дрейфовых трубок и были проведены измерения космических лучей. Эксперименты показали требуемое пространственное разрешение (0.7 мм в радиальной плоскости и 1 см в продольной). SuperNEMO состоит из 4 модулей (на рис. 1 слева изображены 4 модуля), в каждом из которых будет находиться около 500 дрейфовых трубок, содержащих газовую смесь из гелия, этанола и аргона. Выбор изотопа для SuperNEMO был направлен на максимизацию сигнала от распада ββ0ν, над фоном, создающимся от распада ββ2ν и других событий. Под такой критерий отбора подходит 82 Se (Q = 2995 кэВ), обладающий большим периодом полураспада по каналу ββ2ν.

2. Эксперимент MOON

Эксперимент MOON (M o O bservatory O f N eutrinos) − эксперимент по поиску безнейтринного двойного β-распада, включающий себя уже проведенные фазы − I,II,III и готовящуюся к запуску фазу IV. Поиск эффективной майорановской массы нейтрино происходит на уровне 0.03 эВ. Также в этом эксперименте изучаются низкоэнергетические солнечные нейтрино.

2.1. Устройство детектора

Детектор MOON - высокочувствительный детектор для измерения отдельных ββ-распадов, их точку распада и углы вылета, а также γ-излучение. Детектор MOON состоит из многоуровневых модулей, как показано на рисунке 12. Один блок детектора состоит из 17 модулей.


Рис.12. Детектор MOON. Один блок состоит из 17 модулей. 1 модуль имеет 6 сцинтилляторных пластин и 5 наборов координатных детекторов, состоящих из 2х слоев .

Каждый модуль состоит из:

  1. 6 пластиковых сцинтилляторных пластин (PL) для измерения ββ энергии и времени. Сцинтилляционные фотоны собираются фотоумножителями (PMT), которые расположены вокруг пластиковых сцинтилляторных пластин;
  2. 5 наборов координатных детекторов (имеются 2 типа: PL-fiber и Si-strip), состоящих из нижнего и верхнего слоя (один отвечает за X - координату, другой за Y - координату) для определения координаты вершины и угла вылетающих частиц ββ-распада. PL-fiber - детектор, состоящий из параллельно расположенных полос сцинтиллятора. Si-strip - детектор, состоящий из кремниевых стрипов;
  3. толстая пластина детектора, состоящего из aI, для детектирования γ-излучения.
  4. 5 тонких пленок-источников ββ-излучения, которые расположены между слоями координатного детектора.

Два e − от источника ββ-излучения измеряются при условии совпадения треков в верхнем и нижнем слое координатного детектора с верхней и нижней сцинтилляторными пластинами. Все остальные события в этих детекторах в модуле служат активным фильтром для подавления фона от γ-излучения, нейтронов и альфа-частиц. Пластина NaI служит для измерения γ-квантов, образующихся при распаде 100 Ru из возбужденного состояния 0 1 + , при ββ-распаде 100 Mo на возбужденное состояние.
Каждая сцинтилляторная пластина имеет размеры 1.25м ×1.25м ×0.015м, каждый слой
PL-fibers/Si-strips - детектора 0.9м × 0.9m × 0.3mm, в то время как размеры пленки-источника 0.8м × 0.85м с плотностью 0.05 гр/см 2 . Таким образом, в одной пленке содержится 0.36 кг изотопа, в одном модуле 1.8 кг, и 30 кг приходится на один блок в детекторе.
Энергетические разрешение имеет решающее значение для снижения фона от ββ2ν- распада, в области сигнала от ββ0ν - распада. Разрешение
σ ≈ 2.1% достигается при 3 МэВ (энергия β-распада для 100 Mo) для маленького PL (6 см × 6 см × 1 см). Хорошее разрешение ожидается и для больших PL. Такое разрешение требуется, чтобы получить чувствительность в диапазоне ≈ 50 − 30 мэВ. Улучшение разрешения до σ ≈ 1.7% было достигнуто путем усовершенствования сцинтилляторных пластин и ФЭУ. PL-fibers/Si-strips - детектора имеют энергетическое разрешение 2.3% и пространственное 10 - 20 мм 2 .
Многомодульная структура детектора MOON с хорошим энергетическим и пространственным разрешением имеет высокую эффективность для отбора ββ0ν событий и подавления фона. MOON является небольшим детектором ~ 0.4 м 3 /кг, который на несколько порядков меньше строящегося детектора SuperNEMO.

2.2. Изотопы и фон в эксперименте MOON

В детекторе MOON используются обогащенные изотопы 82 Se и 100 Mo. Обогащение до 85% каждого изотопа происходит с помощью центрифуг. Используя 6000 центрифуг и 40 стадий разделения, каждый день получается около 350 г изотопа 100 Mo, т.е. за 5 лет около 0.5 т.
Одним из основных источников фона в эксперименте является загрязнение изотопами 208 Tl и 214 Bi. Подземная лаборатория находится на уровне 2500 м в.э. Фоном от космического излучения могут являться мюоны высоких энергий и нейтроны, образованные в реакции захвата мюона. От таких нейтронов образуются γ-кванты с энергией больше 3 МэВ, которые могут создавать большой фон в диапазоне энергий ββ0ν -распада. Но система детектирования сигнала из сцинтилляционных и координатных детекторов значительно подавляет эти фоновые компоненты.

2.3. Результаты экспериментов

Эксперимент MOON проходил в 3 фазы.
Фаза I: 1 блок детектора (0.03 т изотопа) для поиска майорановской массы нейтрино в диапазоне ≈ 150 мэВ для изотопа 100 Mo.
Фаза II: 4 блока (0.12 т) в диапазоне ≈ 100-70 мэВ.
Фаза III: 16 блоков (0.48 т) в диапазоне ≈ 30-40 мэВ.
На рис. 14 приведен суммарный спектр электронов ββ2ν и ββ0ν распадов в области энергий безнейтринного распада. На графике показано теоретическое предсказание для безнейтринного распада, полученное методом Монте-Карло. В теоретических предсказаниях был учтен фон от загрязнения источника другими изотопами и от космических лучей, которые также были рассчитаны с помощью метода Монте-Карло.

Таблица 4. Нижние границы периодов полураспада и инвариантная масса нейтрино для всех фаз для изотопов 82 Se и 100 Mo эксперимента MOON

Из рис.14 видно, что пик теоретического распределения для ββ0ν - распада соответствует 0.6 t y, т.е. 0.6 событий в тонну на год.

Таблица 5. Оценки для различных фонов в эксперименте MOON

2.4. Перспективы

В ближайшем будущем планируется запустить фазу IV эксперимента MOON, которая будет содержать 32 блока с массой изотопа примерно 1т. Улучшаются методы очищения изотопов от естественных примесей и совершенствуется энергетическое разрешение детекторов, что позволит проводить поиски массы нейтрино в безнейтринном двойном β-распаде в диапазоне ≈ 10-30 мэВ.

3. Эксперимент AMoRE

Эксперимент AMoRE (A dvanced Mo based R are process E xperiment) − это новый эксперимент, в котором будет использоваться кристалл 40 Ca 100 MoO 4 в роли криогенного сцинтиллятора для изучения безнейтринного двойного бета-распада изотопа 100 Mo. Он будет располагаться в подземной лаборатории ЯнгЯнг в Южной Корее. Одновременное считывание фононных и сцинтилляционных сигналов должно подавлять внутренний фон. Предполагаемая чувствительность эксперимента, который будет использовать 100 кг 40 Ca 100 MoO 4 и накапливать данные в течении
5 лет, будет T 1/2 = 3·10 26 лет, что соответствует эффективной массе Майорановских нейтрино в диапазоне ~ 0.02 − 0.06 эВ. Т.к. про обоснование выбора изотопа молибдена было уже сказано, а экспериментальных данных еще нет, то обсудим устройство детектора и принципиальные отличиях этого эксперимента от экспериментов NEMO и MOON.

3.1. Устройство детектора

На рис.15. изображен прототип криогенного детектора с 216 г кристалла 40 Ca 100 MoO 4 и MMC (металлический магнитный калориметр) для проверки чувствительности детектора. Кристалл 40 Ca 100 MoO 4 , 4 см в диаметре и 4 см по высоте, был установлен внутри медного каркаса и закреплен с помощью тефлоновых пластин. На рис. 16 изображена схематическая работа детектора. При взаимодействии заряженной частицы в сцинтилляторе появляется сцинтилляционный и фононный сигналы. В эксперименте детектируются оба сигнала, а затем проводится их анализ. для подавления фона от альфа-частиц от поверхностного и приповерхностного загрязнения.


Рис. 15. Прототип криогенного детектора с 216 г кристалла CaMoO 4 и MMC (металлический магнитный калориметр)


Рис.16. Схематическое представление работы криогенного детектора при регистрации сигнала.

Тонкая золотая пленка, которую выпаривали на одной стороне кристалла, служит коллектором фононов. Для измерения температуры (фононного сигнала) абсорбера (в данном случае золотой пленки) в эксперименте используется детектор из парамагнитных материалов - металлические магнитные калориметры (MMC). Эти калориметры, находясь в постоянном магнитном поле, изменяют свою намагниченность при изменении температуры. Из закона Кюри-Вейса следует гиперболическая зависимость намагниченности от температуры при постоянном магнитном поле. Намагниченность MMC считывается системой магнитных магнетометров − SQUID. Связь между золотой пленкой и ММС осуществляется с помощью тонких золотых контактов.
Когда частица попадает в диэлектрический материал, большая часть энергии преобразуется в фононы. Высокая энергия фононов с частотами, которые близки к частоте Дебая образуются изначально, но они быстро распадаются из-за ангармонических процессов на более низкие частоты. Основные ангармонические процессы: рассеяние на изотопах, неупругие рассеяния на примесях и поверхностях кристаллов. Таким образом, фононы в данных процессах изменяют температуру. При температурах ниже 20–50 К движение фононов становится баллистическим, такие фононы могут попасть на золотую пленку и передать свою энергию электронам. В самой золотой пленке температура повышается в многочисленных электрон-электронных рассеяниях. Эти изменения температуры регистрируются металлическими магнитными калориметрами. Размеры пленки золота и количество золотых контактов были определены на основе термический модели для достижения эффективной передачи тепла. Золотая пленка имеет диаметр 2 см, толщину 200 нм и дополнительно золотой рельеф на одной из поверхностей 200 нм, для увеличения поперечной теплопроводности вещества.
Этот прототип был установлен в надземной лаборатории Kriss (Корейский научно - исследовательский институт). Криогенный холодильник, в котором находился прототип, был окружен 10 см свинцовой защиты для уменьшения фона от γ-излучения. Детектор ММС эффективно работает в интервале температур 10 - 50 мК. При таких температурах усиливается сигнал, т.к. увеличивается чувствительность магнитного калориметра, а теплоемкость уменьшается. Недостатком является то, что при таких температурах разрешающая способность детектора уменьшается из-за любого некоррелированного механизма, к которым относятся температурные флуктуации. В эксперименте с данным прототипом, учитывая фон от космических мюонов и внешнего γ-излучении, была выбрана температура 40 мК, как наиболее оптимальная. Разрешения детекторов для исследуемой области энергий меньше 1% (в районе 10 кэВ), что и требовалось достичь, чтобы эксперимент имел необходимую чувствительность.

3.2. Преимущества кристалла 40 Ca 100 MoO 4

  1. Калориметрический детектор, который в то же время является источником сигнала, который нужно регистрировать, высокая эффективность (около 90%) регистрации полезных событий;
  2. Высокое содержание рабочего изотопа (около 50% по массе) в кристалле;
  3. Специальная технология производства (метод Чохральского) позволяет добиться высокой чистоты выращиваемых кристаллов, существенное снижение внутреннего фона от изотопов 208 Tl и 214 Bi (один из основных источников фона в экспериментах EMO и MOON);
  4. Энергетическое разрешение, сравнимое с разрешением полупроводниковых детекторов
    (3-6 кэВ для фононного режима), подавлен вклад от фона ββ2ν-распада;
  5. Высокая высвечиваемость фотонов при сверхнизких температурах (до 9300 фотонов/МэВ);
  6. Из-за специального строения детектора (сцинтиллятор является также и источником) возможность эффективного подавления внешнего фона;
  7. Возможность дальнейшего увеличения масштабов эксперимента, путем добавлениям монокристаллов в установку;
  8. Возможность производства в больших масштабах изотопа молибдена 100 Mo, имеются достаточные запасы 40 Ca, обедненного по изотопу 48 Ca .


Рис. 17. Кристалл CaMoO 4

3.3. Планы и перспективы проекта AMoRE

  1. AMoRE-I: AMoRE - 1кг изотопа, скоро будет запущен и достигнет чувствительности детектора NEMO-3 T 1/2 = 1.1·10 24 лет, < 0.3–0.9 эВ и планируется, что он будет набирать данные в течение 1 года;
  2. AMoRE-I: 10 кг изотопа, планируется построить в течение 3х лет, чувствительность
    T 1/2 = 3·10 25 лет, < 50–160 мэВ;
  3. AMoRE-II: при удачном эксперименте AMoRE планируется построить AMoRE-II с 200кг изотопа, который будет собирать данные в течение 5 лет и иметь чувствительность
    T 1/2 ≈ 10 27 лет, < 10–30 мэВ.

Наблюдение двойных звезд - чрезвычайно интересное и увлекательное занятие, которому любители астрономии в последнее время уделяют незаслуженно мало внимания. Это особая, традиционная, область любительской наблюдательской практики, сочетающая в себе сразу несколько начал. Это и научное - желание изучить объект, продвинуть вперед наше знание о нем, и техническое - стремление усовершенствовать свой телескоп и после этого «выжать» из него максимум. Есть в этом занятии и спортивное начало - жажда достичь максимума своих возможностей, тренировка своих способностей, преодолевание возникающих при этом трудностей, а есть и эстетическое - просто рассматривать эти необычные, неземные, картины, а среди тысяч и тысяч двойных нет и двух одинаковых, и порой среди них встречаются настоящие шедевры природы, любоваться которыми можно бесконечно. Конечно, в последнее время, после вывода на орбиту сверхточных спутников, измеривших почти все яркие звезды небосвода и получившие беспрецедентную поточности информацию о двойных, научные измерения любителей потеряли актуальность, но все остальные мотивы ведь остались...

Кроме того, счастлив тот астроном, которому посчастливилось увлечься набл. двойных. Ему всегда есть, чем занять себя и свой телескоп в полнолуние, в ночи с дымкой и даже если он живет в центре города, всегда найдутся объекты, которые будут манить его, приглашая найти что-то новое для себя либо просто полюбоваться очереднойпрекрасной картинкой.

Время от времени двойные звезды, особенно тесные, набл. практически все астрономы-любители. Как правило, с целью тестирования оптики своих телескопов (а лучший тест, чем тесная двойная, найти сложно). Разумеется, полюбоваться известными парами, вроде Альбирео, - γ Лебедя, или - γ Андромеды, никто не откажется, но специально охотиться за красивыми, например, теми, в которых наблюдаются значительная разница в цвете - этим занимаются немногие, а жаль: это очень интересная и обещающая массу сюрпризов область. Разница в блеске, близкое расположение компонент могут вызывать усиление видимого цветового контраста, изменять оттенки компонент, или даже совсем менять их цвет. И даже наблюдение одной и той же пары в разные телескопы может значительно изменить привычную уже картину и готовит неожиданности.

Излишне напоминать, что при рассматривании и съемке двойных звезд нужно стремиться использовать телескоп максимального качества, т.к. наблюдения должны вестись с предельными увеличениями, такими как 1,50 и даже больше (апохроматы позволяют поднять увеличение и до 2 и даже 30). Разумеется, внимание окуляру должно быть не меньшим, чем к самому телескопу, стоит помнить давнюю истину: «Хороший телескоп с плохим окуляром - плохой телескоп».

На этом рисунке из «Larousse Encyclopedia of Astronomy » цвета звезд значительно усилены, больше, чем они представляются в телескопы. Тем не менее, контраст в визуальных парах порой бывает столь же впечатляющим, особенно при наблюдении в малые телескопы. Все звезды изображены примерно в одном масштабе, юг - вверху, восток - справа. Только ξ Волопаса, позиционный угол которой сейчас порядка 320°, заметно изменилось расположение звезд за почти 50 лет с момента публикации .

Наблюдению двойных и кратных звезд всегда уделялось не слишком много внимания. Даже в былые годы изобилия хорошей астрономической литературы, эта тема часто обходилась стороной, и вы вряд ли найдете по ней много информации. Причина этому, возможно, кроется в невысокой научной значимости подобных наблюдений. Ведь не секрет, что точность любительских измерений параметров двойных звезд, как правило, значительно ниже, чем у астрономов-профессионалов, имеющих возможность работать на больших инструментах.

Тем не менее, практически все любители астрономии хотя бы в течение короткого периода времени обязательно занимаются наблюдениями двойных звезд. Цели, которые они при этом преследуют, могут быть совершенно разными: от проверки качества оптики или чисто спортивного интереса до проведения действительно научно значимых измерений.


Важно отметить также, что помимо прочего, наблюдения двойных звезд являются еще и отличной тренировкой зрения любителя астрономии. Разглядывая тесные пары, наблюдатель развивает в себе способность подмечать самые незначительные, мелкие детали изображения, поддерживая себя, таким образом, в хорошей форме, что в дальнейшем обязательно сказывается при наблюдениях других небесных объектов. Хорошим примером может послужить история, когда один из моих коллег, потратив несколько выходных дней, пытался разрешить пару звезд с разделением в 1", используя 110-мм рефлектор, и, в конце концов, добился результата. В свою очередь, мне после большого перерыва в наблюдениях пришлось спасовать перед этой парой с куда более крупным инструментом.

Телескоп и наблюдатель

Суть наблюдения двойной звезды предельно проста и заключается в разделении звездной пары на отдельные компоненты и определении их взаимного расположения и расстояния между ними. Однако на практике все оказывается далеко не так просто и однозначно. Во время наблюдений начинают проявляться различного рода сторонние факторы, которые не позволяют без некоторых ухищрений достичь нужного вам результата. Возможно, вам уже известно о существовании такого понятия, как предел Дэвиса. Эта величина определяет возможности некоторой оптической системы в разделении двух близко расположенных точечных источников света, иначе говоря, определяет разрешающую способность р вашего телескопа. Значение этого параметра в угловых секундах может быть вычислено по следующей простой формуле:

ρ = 120"/D


где D - диаметр объектива телескопа в миллиметрах.

Помимо диаметра объектива разрешающая способность телескопа зависит также от типа оптической системы, от качества изготовления оптики, ну и, разумеется, от состояния атмосферы и навыков наблюдателя.

Что нужно иметь для того, чтобы приступить к наблюдениям? Самое главное, конечно, телескоп. И чем больше диаметр его объектива, тем лучше. Кроме этого вам понадобится окуляр (или линза Барлоу), дающий большое увеличение. К сожалению, некоторые любители не всегда правильно используют закон Дэвиса, полагая, что только он определяет возможность разрешения тесной двойной пары. Несколько лет назад я встречался с одним начинающим любителем, который жаловался на то, что уже в течение нескольких сезонов не может разделить в свой 65-мм телескоп пару звезд, расположенных на расстоянии 2" друг от друга. Оказалось, что он пытался сделать это, используя всего 25-кратное увеличение, аргументируя это тем, что с таким увеличением у телескопа лучше видимость. Безусловно, он был прав в том, что маленькое увеличение значительно уменьшает вредное влияние воздушных потоков в атмосфере. Однако он не учел, что при столь малом увеличении глаз просто не способен различить два тесно расположенных источника света!

Кроме телескопа вам могут понадобиться еще и измерительные приборы. Впрочем, если вы не собираетесь вести измерения положений компонентов относительно друг друга, то можно обойтись и без них. Скажем, вас вполне может устроить сам факт того, что вам удалось провести разделение близко расположенных звезд вашим инструментом и убедиться, что стабильность атмосферы сегодня подходящая или ваш телескоп дает хорошие показатели, а вы еще не утратили былых навыков и сноровку.

Для решения более серьезных задач необходимо использовать микрометр для измерения расстояний между звездами и часовую шкалу для определения позиционных углов. Иногда эти два прибора можно встретить совмещенными в одном окуляре, в фокусе которого устанавливается стеклянная пластинка с нанесенными на ней шкалами, которые позволяют проводить соответствующие измерения. Подобные окуляры выпускаются различными зарубежными фирмами (в частности, Meade, Celestron и др.), некоторое время назад их также изготавливали на новосибирском предприятии "Точприбор".

Проведение измерений

Как мы уже говорили, измерение характеристик двойной звезды сводится к определению взаимного расположения составляющих ее компонентов и углового расстояния между ними.

Позиционный угол. В астрономии эта величина используется для описания направления одного объекта относительно другого для уверенного позиционирования на небесной сфере. В случае двойных звезд термин позиционного угла включает в себя определение положения более слабого компонента относительно более яркого, который принимается за точку отсчета. Позиционные углы отсчитываются от направления на север (0°) и далее в сторону востока (90°), юга (180°) и запада (270°). Таким образом, две звезды с одинаковым прямым восхождением имеют позиционный угол 0° или 180°. В случае, если они имеют одинаковое склонение, угол будет равен либо 90°, либо 270°.

До того как будет произведено измерение позиционного угла, необходимо правильно сориентировать измерительную шкалу окуляра-микрометра. Поместив звезду в центр поля зрения и выключив часовой механизм (полярная ось монтировки должна быть выставлена на полюс мира), мы заставим звезду перемещаться в поле зрения телескопа с востока на запад. Точка, в которой звезда будет выходить за границы поля зрения, и есть точка направления на запад. Если теперь, вращая окуляр вокруг своей оси, совместить звезду со значением 270° на часовой шкале микрометра, то можно считать, что мы выполнили требуемую установку. Оценить точность проделанной работы можно, сдвинув телескоп так, чтобы звезда только-только стала появляться из-за границы видимости. Эта точка появления должна совпасть с отметкой 90° на часовой шкале, после чего звезда в ходе своего суточного движения должна вновь пройти точку центра и выйти за пределы поля зрения в отметке 270°. Если этого не происходит, то процедуру ориентации микрометра следует повторить.



Если теперь навести телескоп на интересующую вас звездную пару и поместить главную звезду в центр поля зрения, то мысленно проведя линию между ней и вторым компонентом, мы получим требуемое значение позиционного угла, сняв его значение с часовой шкалы микрометра.

Разделение компонентов. По правде говоря, самая сложная часть работы уже сделана. Нам остается только измерить расстояние между звездами по линейной шкале микрометра и затем перевести полученный результат из линейной меры в угловую.

Очевидно, что для проведения подобного перевода нам необходимо прокалибровать шкалу микрометра. Это делается следующим образом: наведите телескоп на звезду с хорошо известными координатами. Остановите часовой механизм телескопа и засеките время, за которое звезда проходит путь от одного крайнего деления шкалы к другому. Повторите эту процедуру несколько раз. Полученные результаты измерений усредняются, и угловое расстояние, соответствующее положению двух крайних отметок на шкале окуляра, вычисляется по формуле:

А = 15 х t х cos δ


где f - время прохождения звезды, δ - склонение звезды. Разделив затем величину А на количество делений шкалы, мы получим цену деления микрометра в угловой мере. Зная эту величину, вы без труда сможете вычислить угловое расстояние между компонентами двойной звезды (умножив количество делений шкалы, помещающихся между звездами, на цену деления).

Наблюдение тесных пар

Основываясь на своем опыте, могу сказать, что разделение звезд с расстоянием, близким к пределу Дэвиса, становится почти невозможным, и тем сильнее это проявляется, чем больше разница в звездных величинах между компонентами пары. В идеале правило Дэвиса работает, если звезды имеют одинаковую яркость.

Разглядывая в телескоп относительно яркую звезду при большом увеличении, можно заметить, что звезда выглядит не просто светящейся точкой, а как небольшого размера диск (диск Эри), окруженный несколькими светлыми кольцами (так называемые дифракционные кольца). Понятно, что количество и яркость таких колец непосредственно влияет на легкость, с которой вы сможете разделить тесную пару. В случае существенной разницы в блеске компонентов может получиться так, что слабая звезда попросту "растворится" в дифракционной картине главной звезды. Недаром такие известные яркие звезды, как Сириус и Ригель, имеющие слабых спутников, очень сложно поддаются разделению в небольшие телескопы.



В случае большой разницы в цвете компонентов задача разделения двойной, наоборот, несколько упрощается. Наличие цветовых аномалий в дифракционной картине становится более заметным, и глаз наблюдателя намного быстрее замечает наличие слабого спутника.

Считается, что максимально полезное увеличение, даваемое телескопом, приблизительно равно удвоенному диаметру объектива в мм, и использование большего увеличения ни к чему не приводит. В случае двойных звезд это не так. Если атмосфера в ночь наблюдения спокойна, то использование 2-х или даже 4-х кратного максимального увеличения, возможно, поможет увидеть некоторые "возмущения" в дифракционной картине, что укажет вам на присутствие источника этих "помех". Разумеется, это возможно сделать только на телескопе с хорошей оптикой.

Для определения увеличения, с которого можно начать разделять тесную пару, можно воспользоваться следующей простой формулой:

X = 240"/S"


где S - угловое расстояние между компонентами двойной в секундах дуги.

Для разделения тесных звезд можно посоветовать также использовать нехитрое приспособление, которое надевается на трубу телескопа и превращает круглую форму апертуры, скажем, в правильный шестиугольник. Подобное диафрагмирование несколько изменяет распределение световой энергии в изображении звезды: центральный диск Эри становится несколько меньше в размерах, а вместо привычных дифракционных колец наблюдаются несколько ярких пикообразных всплесков. Если вращать такую насадку, можно добиться того, что вторая звезда окажется между двумя соседними всплесками и таким образом "позволит" обнаружить свое присутствие.

Никто в мире не понимает квантовую механику - это главное, что нужно о ней знать. Да, многие физики научились пользоваться ее законами и даже предсказывать явления по квантовым расчетам. Но до сих пор непонятно, почему присутствие наблюдателя определяет судьбу системы и заставляет ее сделать выбор в пользу одного состояния. «Теории и практики» подобрали примеры экспериментов, на исход которых неминуемо влияет наблюдатель, и попытались разобраться, что квантовая механика собирается делать с таким вмешательством сознания в материальную реальность.

Кот Шредингера

Сегодня существует множество интерпретаций квантовой механики, самой популярной среди которых остается копенгагенская. Ее главные положения в 1920-х годах сформулировали Нильс Бор и Вернер Гейзенберг. А центральным термином копенгагенской интерпретации стала волновая функция - математическая функция, заключающая в себе информацию обо всех возможных состояниях квантовой системы, в которых она одновременно пребывает.

По копенгагенской интерпретации, доподлинно определить состояние системы, выделить его среди остальных может только наблюдение (волновая функция только помогает математически рассчитать вероятность обнаружить систему в том или ином состоянии). Можно сказать, что после наблюдения квантовая система становится классической: мгновенно перестает сосуществовать сразу во многих состояниях в пользу одного из них.

У такого подхода всегда были противники (вспомнить хотя бы «Бог не играет в кости» Альберта Эйнштейна), но точность расчетов и предсказаний брала свое. Впрочем, в последнее время сторонников копенгагенской интерпретации становится все меньше и не последняя причина тому - тот самый загадочный мгновенный коллапс волновой функции при измерении. Знаменитый мысленный эксперимент Эрвина Шредингера с бедолагой-котом как раз был призван показать абсурдность этого явления.

Итак, напоминаем содержание эксперимента. В черный ящик помещают живого кота, ампулу с ядом и некий механизм, который может в случайный момент пустить яд в действие. Например, один радиоактивный атом, при распаде которого разобьется ампула. Точное время распада атома неизвестно. Известен лишь период полураспада: время, за которое распад произойдет с вероятностью 50%.

Получается, что для внешнего наблюдателя кот внутри ящика существует сразу в двух состояниях: он либо жив, если все идет нормально, либо мертв, если распад произошел и ампула разбилась. Оба этих состояния описывает волновая функция кота, которая меняется с течением времени: чем дальше, тем больше вероятность, что радиоактивный распад уже случился. Но как только ящик открывается, волновая функция коллапсирует и мы сразу видим исход живодерского эксперимента.

Выходит, пока наблюдатель не откроет ящик, кот так и будет вечно балансировать на границе между жизнью и смертью, а определит его участь только действие наблюдателя. Вот абсурд, на который указывал Шредингер.

Дифракция электронов

По опросу крупнейших физиков, проведенному газетой The New York Times, опыт с дифракцией электронов, поставленный в 1961 году Клаусом Йенсоном, стал одним из красивейших в истории науки. В чем его суть?

Есть источник, излучающий поток электронов в сторону экрана-фотопластинки. И есть преграда на пути этих электронов - медная пластинка с двумя щелями. Какой картины на экране можно ожидать, если представлять электроны просто маленькими заряженными шариками? Двух засвеченных полос напротив щелей.

В действительности на экране появляется гораздо более сложный узор из чередующихся черных и белых полос. Дело в том, что при прохождении через щели электроны начинают вести себя не как частицы, а как волны (подобно тому, как и фотоны, частицы света, одновременно могут быть и волнами). Потом эти волны взаимодействуют в пространстве, где-то ослабляя, а где-то усиливая друг друга, и в результате на экране появляется сложная картина из чередующихся светлых и темных полос.

При этом результат эксперимента не меняется, и если пускать электроны через щель не сплошным потоком, а поодиночке, даже одна частица может быть одновременно и волной. Даже один электрон может одновременно пройти через две щели (и это еще одно из важных положений копенгагенской интерпретации квантовой механики - объекты могут одновременно проявлять и свои «привычные» материальные свойства, и экзотические волновые).

Но при чем здесь наблюдатель? При том, что с ним и без того запутанная история стала еще сложнее. Когда в подобных экспериментах физики попытались зафиксировать с помощью приборов, через какую щель в действительности проходит электрон, картинка на экране резко поменялась и стала «классической»: два засвеченных участка напротив щелей и никаких чередующихся полос.

Электроны будто не захотели проявлять свою волновую природу под пристальным взором наблюдателя. Подстроились под его инстинктивное желание увидеть простую и понятную картинку. Мистика? Есть и куда более простое объяснение: никакое наблюдение за системой нельзя провести без физического воздействия на нее. Но к этому вернемся еще чуть позже.

Нагретый фуллерен

Опыты по дифракции частиц ставили не только на электронах, но и на куда больших объектах. Например, фуллеренах - крупных, замкнутых молекулах, составленных из десятков атомов углерода (так, фуллерен из шестидесяти атомов углерода по форме очень похож на футбольный мяч: полую сферу, сшитую из пяти- и шестиугольников).

Недавно группа из Венского университета во главе с профессором Цайлингером попыталась внести элемент наблюдения в подобные опыты. Для этого они облучали движущиеся молекулы фуллерена лазерным лучом. После, нагретые внешним воздействием, молекулы начинали светиться и тем неминуемо обнаруживали для наблюдателя свое место в пространстве.

Вместе с таким нововведением поменялось и поведение молекул. До начала тотальной слежки фуллерены вполне успешно огибали препятствия (проявляли волновые свойства) подобно электронам из прошлого примера, проходящим сквозь непрозрачный экран. Но позже, с появлением наблюдателя, фуллерены успокоились и стали вести себя как вполне законопослушные частицы материи.

Охлаждающее измерение

Одним из самых известных законов квантового мира является принцип неопределенности Гейзенберга: невозможно одновременно установить положение и скорость квантового объекта. Чем точнее измеряем импульс частицы, тем менее точно можно измерить ее положение. Но действие квантовых законов, работающих на уровне крошечных частиц, обычно незаметно в нашем мире больших макрообъектов.

Потому тем ценнее недавние эксперименты группы профессора Шваба из США, в которых квантовые эффекты продемонстрировали не на уровне тех же электронов или молекул фуллерена (их характерный диаметр - около 1 нм), а на чуть более ощутимом объекте - крошечной алюминиевой полоске.

Эту полоску закрепили с обеих сторон так, чтобы ее середина была в подвешенном состоянии и могла вибрировать под внешним воздействием. Кроме того, рядом с полоской находился прибор, способный с высокой точностью регистрировать ее положение.

В результате экспериментаторы обнаружили два интересных эффекта. Во-первых, любое измерение положения объекта, наблюдение за полоской не проходило для нее бесследно - после каждого измерения положение полоски менялось. Грубо говоря, экспериментаторы с большой точностью определяли координаты полоски и тем самым, по принципу Гейзенберга, меняли ее скорость, а значит и последующее положение.

Во-вторых, что уже совсем неожиданно, некоторые измерения еще и приводили к охлаждению полоски. Получается, наблюдатель может лишь одним своим присутствием менять физические характеристики объектов. Звучит совсем невероятно, но к чести физиков скажем, что они не растерялись - теперь группа профессора Шваба думает, как применить обнаруженный эффект для охлаждения электронных микросхем.

Замирающие частицы

Как известно, нестабильные радиоактивные частицы распадаются в мире не только ради экспериментов над котами, но и вполне сами по себе. При этом каждая частица характеризуется средним временем жизни, которое, оказывается, может увеличиваться под пристальным взором наблюдателя.

Впервые этот квантовый эффект предсказали еще в 1960-х годах, а его блестящее экспериментальное подтверждение появилось в статье , опубликованной в 2006 году группой нобелевского лауреата по физике Вольфганга Кеттерле из Массачусетского технологического института.

В этой работе изучали распад нестабильных возбужденных атомов рубидия (распадаются на атомы рубидия в основном состоянии и фотоны). Сразу после приготовления системы, возбуждения атомов за ними начинали наблюдать - просвечивать их лазерным пучком. При этом наблюдение велось в двух режимах: непрерывном (в систему постоянно подаются небольшие световые импульсы) и импульсном (система время от времени облучается импульсами более мощными).

Полученные результаты отлично совпали с теоретическими предсказаниями. Внешние световые воздействия действительно замедляют распад частиц, как бы возвращают их в исходное, далекое от распада состояние. При этом величина эффекта для двух исследованных режимов также совпадает с предсказаниями. А максимально жизнь нестабильных возбужденных атомов рубидия удалось продлить в 30 раз.

Квантовая механика и сознание

Электроны и фуллерены перестают проявлять свои волновые свойства, алюминиевые пластинки охлаждаются, а нестабильные частицы замирают в своем распаде: под всесильным взором наблюдателя мир меняется. Чем не свидетельство вовлеченности нашего разума в работу мира вокруг? Так может быть правы были Карл Юнг и Вольфганг Паули (австрийcкий физик, лауреат Нобелевской премии, один из пионеров квантовой механики), когда говорили, что законы физики и сознания должны рассматриваться как взаимодополняющие?

Но так остается только один шаг до дежурного признания: весь мир вокруг суть нашего разума. Жутковато? («Вы и вправду думаете, что Луна существует лишь когда вы на нее смотрите?» - комментировал Эйнштейн принципы квантовой механики). Тогда попробуем вновь обратиться к физикам. Тем более, в последние годы они все меньше жалуют копенгагенскую интерпретацию квантовой механики с ее загадочным коллапсом волной функции, на смену которому приходит другой, вполне приземленный и надежный термин - декогеренция.

Дело вот в чем - во всех описанных опытах с наблюдением экспериментаторы неминуемо воздействовали на систему. Подсвечивали ее лазером, устанавливали измеряющие приборы. И это общий, очень важный принцип: нельзя пронаблюдать за системой, измерить ее свойства не провзаимодействовав с ней. А где взаимодействие, там и изменение свойств. Тем более, когда с крошечной квантовой системой взаимодействуют махины квантовых объектов. Так что вечный, буддистский нейтралитет наблюдателя невозможен.

Как раз это объясняет термин «декогеренция» - необратимый с точки зрения процесс нарушения квантовых свойств системы при ее взаимодействии с другой, крупной системой. Во время такого взаимодействия квантовая система утрачивает свои изначальные черты и становится классической, «подчиняется» системе крупной. Этим и объясняется парадокс с котом Шредингера: кот представляет собой настолько большую систему, что его просто нельзя изолировать от мира. Сама постановка мысленного эксперимента не совсем корректна.

В любом случае, по сравнению с реальностью как актом творения сознания, декогеренция звучит куда более спокойно. Даже, может быть, слишком спокойно. Ведь с таким подходом весь классический мир становится одним большим эффектом декогеренции. А как утверждают авторы одной из самых серьезных книг в этой области, из таких подходов еще и логично вытекают утверждения вроде «в мире не существует никаких частиц» или «не существует никакого времени на фундаментальном уровне».

Созидающий наблюдатель или всесильная декогеренция? Приходится выбирать из двух зол. Но помните - сейчас ученые все больше убеждаются, что в основе наших мыслительных процессов лежат те самые пресловутые квантовые эффекты. Так что где заканчивается наблюдение и начинается реальность - выбирать приходится каждому из нас.



Предыдущая статья: Следующая статья:

© 2015 .
О сайте | Контакты
| Карта сайта